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Abstract
Genomic selection (GS) is a promising strategy for enhancing genetic gain. We investigated

the accuracy of genomic estimated breeding values (GEBV) in four inter-related synthetic

populations that underwent several cycles of recurrent selection in an upland rice-breeding

program. A total of 343 S2:4 lines extracted from those populations were phenotyped for

flowering time, plant height, grain yield and panicle weight, and genotyped with an average

density of one marker per 44.8 kb. The relative effect of the linkage disequilibrium (LD) and

minor allele frequency (MAF) thresholds for selecting markers, the relative size of the train-

ing population (TP) and of the validation population (VP), the selected trait and the genomic

prediction models (frequentist and Bayesian) on the accuracy of GEBVs was investigated

in 540 cross validation experiments with 100 replicates. The effect of kinship between the

training and validation populations was tested in an additional set of 840 cross validation

experiments with a single genomic prediction model. LD was high (average r2 = 0.59 at 25

kb) and decreased slowly, distribution of allele frequencies at individual loci was markedly

skewed toward unbalanced frequencies (MAF average value 15.2% and median 9.6%),

and differentiation between the four synthetic populations was low (FST�0.06). The accu-

racy of GEBV across all cross validation experiments ranged from 0.12 to 0.54 with an aver-

age of 0.30. Significant differences in accuracy were observed among the different levels of

each factor investigated. Phenotypic traits had the biggest effect, and the size of the inci-

dence matrix had the smallest. Significant first degree interaction was observed for GEBV

accuracy between traits and all the other factors studied, and between prediction models

and LD, MAF and composition of the TP. The potential of GS to accelerate genetic gain and

breeding options to increase the accuracy of predictions are discussed.
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Introduction
Genomic selection (GS) arose from the combination of new high-throughput marker technolo-
gies and new statistical methods that allow the analysis of the genetic architecture of complex
traits in the framework of infinitesimal model effects. GS differs significantly from conven-
tional marker assisted selection as it makes it possible to select individuals without prior knowl-
edge of an association between the markers and the trait of interest. GS refers to methods that
use genome-wide markers to predict an individual’s genomic value with enough accuracy to
allow the selection of individuals based on that prediction alone. GS consists of three steps: (i)
inference of the genotype-phenotype relationships in a training population, (ii) prediction of
genetic value based on marker genotypes or genomic estimated breeding values (GEBV) in a
target population and (iii) selection of individuals based on their GEBV [1]. As GS does not
limit the selection to a few markers with a significant association with the trait of interest, it is
possible to use markers to select for traits whose genetic control depends on many genes/QTLs
with small effects as well as a few genes/QTLs with large effects. GS is thus perfectly suited for
breeding highly polygenic traits, such as yield, drought tolerance, and resource use efficiency
[1,2].

Several statistical prediction models have been developed that differ in the assumptions they
make about the effects of markers and the variance of such effects across the genome: random
effects drawn from a normal distribution with equal variance for all markers (ridge regression
best linear unbiased prediction), random effects drawn for each marker from a normal distri-
bution with its own variance (Bayes A), or the probability that the marker has no effect at all
(Bayes B). Semi-parametric and non-parametric regressions have been developed to map geno-
types to phenotypes for traits with non-additive genetic architecture [3]. However there is no
single best model and the accuracy of the different models depends on the characteristics of the
target population (effective population size, linkage disequilibrium, population structure, etc.)
and the traits targeted (heritability, number of QTLs and the size of their effects, and the rela-
tive magnitude of additive and non-additive genetic variance).

To date, research on GS has mainly focussed on livestock breeding. Its use in plant breeding
schemes began [4] with investigations of the accuracy of GEBV predictions relying on simula-
tion studies [5–7]. The first GS studies in crops using experimental data were based on popula-
tions generated from biparental crosses of maize [8,9] and wheat [10] before shifting to
populations with more a complex genetic structure such as diversity panels of wheat [7], maize
[11], and oats [12], and advance breeding lines derived from multiple crosses in wheat [10], or
from a nested association mapping populations in maize [13].

GS is rather new in rice (Oryza sativa). A simulation study comparing the accuracy of nine
GS methods in predicting eight traits in a collection of 110 Asian cultivars [14] concluded that
accuracy depended to a great extent on the traits targeted and that reliability was low when
only a small number of cultivars was used for validation. Two studies reported on the applica-
tion of GS to empirical data on rice. Based on a set of 413 highly diverse accessions with strong
population structure, two separate studies [15,16] revealed that the most accurate predictions
can be obtained through stratified sampling of the training set. More recently, genomic predic-
tions based on a population of 383 elite breeding lines from the International Rice Research
Institute’s (IRRI) irrigated rice breeding program, and 73,147 markers concluded that one
marker every 0.2 cM is sufficient [17]. GS in rice was shown to better capture the genetic vari-
ance of small-effect QTLs that cannot be detected by genome wide association studies GWAS
[16]. The authors showed that the proportion of phenotypic variation explained by all QTLs
identified by GWAS on the same population [18] was lower than the proportion obtained with
a model based on all markers, i.e a potential 65% genetic gain.
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Since 1992, CIAT (International center for tropical agriculture) and Cirad (French agricul-
tural research and international cooperation organization for sustainable development) have
developed a rice breeding program for Latin American and the Caribbean based on the
improvement of synthetic populations through recurrent selection (RS) [19,20]. The program
started with the development of a base population P0 through inter-crossing of approximately
60 complementary founder accessions. The resulting base population was recombined several
times to generate a large number of recombinants, leading to a synthetic population of rather
low linkage disequilibrium (LD) endowed with sufficient genetic variability for future selection.
The RS scheme includes three stages conducted recurrently: (i) evaluation of individuals
derived from a population Pn, (ii) selection with mild pressure of the best individuals to gradu-
ally increase the frequency of favourable alleles at loci involved in complex traits (additive and
epistasis effects) [21], (iii) inter-crossing of the selected individuals to form a new population
Pn+1 with an improved mean. This scheme is facilitated by the presence of a recessive nuclear
male-sterility (ms-IR36) gene located on chromosome 2, segregating within the population
[22]. At the end of each cycle, the selected best individuals are also used for the development of
improved varieties through conventional pedigree breeding. Based on the assumption that the
RS population breeding scheme provides a favourable framework for the application of the GS
approach, we started investigating the accuracy of GEBV prediction between two successive
generations of RS as well as the sensitivity of the accuracy to different population parameters
and prediction methods.

Here, we present the results of a large array of cross validation experiments exploring the
effects of the size of the training population, the density of markers in relation with linkage dis-
equilibrium (LD) and minor allele frequency (MAF), the relatedness between the training and
the breeding population, the heritability of the target traits and the type of prediction model on
the accuracy of GEBV prediction using phenotypic and genotypic data on 343 S2:4 lines
extracted from our upland rice synthetic population.

Materials and Methods

Plant material
Numerous populations have been developed by Cirad and CIAT for the purpose of breeding
upland rice varieties for Latin America and the Caribbean. Four populations that underwent
more than 10 cycles of RS with very mild selection for yield under favourable upland condi-
tions form the base of the CIAT upland rice-breeding program. To test the effect of structure
in GS, the four populations were combined to build a training population (TP). One hundred
S0 plants with a heterozygous genotype at the male sterility locusms-IR36 [22] were extracted
from each of the four synthetic populations PCT4-C0, PCT4-C1, PCT4-C2 and PCT11-C1.
PCT4-C0 was created in 1995 by crossing seven elite lines from the CIAT, IRRI and Embrapa
upland rice program with a source of sterility originating from a base population (CNA-IRAT
A) comprising 40 founder accessions. PCT4-C1 is the product of several cycles of RS on
PCT4-C0, with very mild selection for yield under favourable upland savannah rice growing
conditions in Colombia. PCT4-C2 is the product of several cycles of RS on PCT4-C0, plus not
well-documented enrichments in Bolivia. PCT11-C1 was created in 1996 by crossing 17 acces-
sions of diverse origins with representatives of PCT4-C0 population bearing the [ms ms] geno-
type and was improved through RS breeding in Bolivia [19]. The 400 S0 were advanced to S1:2
through single seed descent while marker assisted selection was performed at thems-IR36
locus. For each S1:2 one homozygote fertile plant was advanced to S2:3 for DNA extraction and
to S2:4 for phenotyping, using a bulk breeding procedure.
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Target traits and phenotypic data
The phenotyping experiment took place in the Colombia Agricultural Research Corporation
(Spanish acronym CORPOICA) Center (La Libertad) located in Villavicencio, Meta, Colombia
(9°6’N; 73°34’W; 330 m asl.) during the 2013 rainy season. No specific permission was required
for phenotyping at the CORPOICA facility as an existing agreement links CIAT and COR-
POICA to carry-on field trials at the La Libertad location (convenio de accuerdo CIAT-COR-
POICA # 20130181 del 15 de Mayo de 2013). Furthermore, the field studies did not involve
endangered or protected species. The field used for evaluation is typical of the savannah condi-
tions, with acid soils (pH< 5.0) and high aluminium content (> 75 ppm). The field evaluation
was conducted under standard agricultural practices. The experimental design was an alpha
lattice with 21 blocks of 17 plots for each of the two complete replicates. It comprised 346 S2:4
lines (86, 83, 84 and 93 lines from the three PCT4 and PCT11-C1 populations) with three stan-
dard checks (Oryzica Sabana 6, Oryzica Sabana 10, Cirad 409) and 10 additional entries to
complete the design. The experiment began with dry direct seeding. Each experimental plot
comprised two 3 m-long rows with 26 cm between row spacing. Seed density was one gram of
seed per meter.

The target traits were days to flowering (FL), plant height at maturity (PH), weight of an
individual panicle (PW) and grain yield (YLD), assumed to represent together a wide range of
heritability and genetic architecture. FL was recorded as the date when 50% of the plants in the
plot had flowered. PH was the average height (cm) of five plants in the plot. Five panicles were
collected along a distance of one meter in the row, weighed and averaged to obtain the individ-
ual PW (g). Grains from these five panicles were added to the grains collected from plants
along the remainder of the one-meter length to give YLD expressed in g/m.

First, a diagnostic module was run using the “influence” option to detect outliers among the
individual observations. It included the “iter =“ sub-option that updates both fixed effects and
covariance parameters by refitting the mixed model when an observation is deleted. (http://
support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_
mixed_sect027.htm). This diagnostic procedure led to the elimination of two elementary data.
The selection of entries with both phenotypic data and genotypic data lead to a final number of
343 S2:4 lines, which were used to develop the prediction model.

For each trait, experimental data were analyzed using the SAS 9.3 MIXED procedure [23] to
estimate the BLUP values and heritability. The ANOVA model was Yijk = μ + gi + Rj + bk(j) +
eijk in which Yijk was the phenotype, μ the overall mean, gi was the genotype effect considered
as random, Rj was the replicate effect considered as fixed, bk(j) was the random effect of the
block within a replicate, and eijk was the residual considered as a random effect.

Variance components were obtained, and a BLUP value was extracted for each line to be
used in the GS models. The phenotypic BLUP x accession matrix is available for download at
http://tropgenedb.cirad.fr/tropgene/JSP/interface.jsp?module=RICE as "SEPANG dataset".

For each trait, narrow sense heritability was calculated using the ratio h2
ns ¼

s2S2:4
s2P
, where s2

S2:4

is the genotypic variance obtained from the experimental data (assuming only additive genetic
variance among S2:4 families) and the phenotypic variance s2

P ¼ s2
S2:4

þ s2
e , where s

2
e is the

residual variance obtained from the ANOVA.
Multi-dimensional analysis of phenotypic data by factorial discriminant analysis (FDA) was

performed and pairwise Fisher distance between subpopulations was calculated using the
XLSTAT package [24].
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Genotypic data
Genomic DNA was extracted from bulked leaf tissue from 15 S2:3 plants following the MATAB
method described in [25] and diluted to 100 ng/μl. Genotyping was done at Diversity Arrays
Technology Pty Ltd (DArT P/L), Australia, following a method combining Diversity Arrays
Technology (DArT) and next generation sequencing DArTseq described in Courtois et al. [26].
The proprietary analytical pipeline developed by DArT P/L was used to produce DArT
score tables and SNP tables. It provided 9,681 SNP markers of which 8,385 had less than 20%
missing data for 343 S2:3 lines. The average rate of missing data among the 8,385 SNP was
3.2%. Genotypic profiles for these missing data were estimated using Beagle v3.3 through the
open source Synbreed package available from the R website (http://cran.r-project.org/web/
packages/synbreed/index.html). Beagle uses a hidden Markov model to infer haplotypes and
imputes sporadic missing data on large scale phase known or unknown genotype data sets
[27]. The imputation procedure was performed on markers with less than 20% missing data
and an MAF>5% and resulted in complete dataset for 8,336 SNP markers with imputed geno-
types selected with a>0.75 probability. The 8,336 SNP x accession matrix is available for
download at http://tropgenedb.cirad.fr/tropgene/JSP/interface.jsp?module=RICE as "SEPANG
dataset".

Methods for characterizing the population
Population structure. The structuring of the 343 S2:3 lines into four subpopulations corre-

sponding to PCT4-C0, PCT4-C1, PCT4-C2 and PCT11-C1 was investigated by FDA [24]. The
analysis was performed with the coordinates of the S2:3 lines on the 10 first axes of a principal
components analysis, using the genotype on the 3,675 SNP loci with no missing data.

Genetic differentiation. Genetic variation between subpopulations was estimated using a
pairwise FST test that estimates genetic differentiation based on allele frequency [28]. The FST
statistics were calculated over the genome using 3,675 markers with no missing data with Arle-
quin software [29].

Effective population size (Ne). Ne was estimated for each of the four subpopulations as
well as for the whole population, from genotypes at 3,675 SNP loci. Ne was calculated using the
linkage disequilibrium method of Waples and Do [30], re-implemented in NeEstimator V2.01
[31].

Kinship among the 343 S2:3 lines. Amarker-based kinship matrix was generated using
the 8,336 SNP available after imputation. Kinship estimates were obtained by calculating a dis-
tance matrix (dij = n/8,336; n being the number of SNPs that differ between line i and line j),
which was converted into a similarity matrix by subtracting all values from 2, then scaled to
rank values from 0 to 2, using the Synbreed package [32].

Pairwise linkage disequilibrium. LD within the panel of 343 S2:3 lines was evaluated for
each chromosome by computing r2 between all pairs of SNP markers of a given chromosome,
as defined by Hill and Roberson [33]. The r2 were computed using the Synbreed package,
which called for a R function under the option pairwiseLD use.plink = FALSE [32].

Population parameters considered for their effect on the accuracy of
predictions

Size of the training population. The effect of the size of the training population (TP) was
analyzed by varying the fraction (k) of the population used for the model calibration with
respect to the fraction used for model validation (VP). Three fractions were considered, k = 3,

GS in Rice Synthetic Population

PLOS ONE | DOI:10.1371/journal.pone.0136594 August 27, 2015 5 / 25

http://cran.r-project.org/web/packages/synbreed/index.html
http://cran.r-project.org/web/packages/synbreed/index.html
http://tropgenedb.cirad.fr/tropgene/JSP/interface.jsp?module=RICE


www.manaraa.com

6 and 9, where 1/k of the total population (343 S2:4 lines) was used for the validation of a pre-
diction model developed on (k-1)/k of the population.

For the main cross validation experiment, incidence matrices were built to evaluate the
effects of MAF, LD and the resulting number of markers. Nine sets of SNP markers were
selected by combining three threshold values of MAF (� 2.5,� 5 and� 10%) with three
threshold values of LD (r2 � 0.75, r2 � 0.90 and r2 � 1). Markers were first retained on the
basis of MAF threshold and second on the basis of pairwise r2 values with all other markers on
the carrier chromosome. MAF threshold values were selected to assess the impact of including
less frequent alleles in the prediction model, while the LD threshold values were selected to
assess the impact of redundancy caused by linked loci.

In a supplementary set of cross validation experiments, the effects of LD and MAF on the
accuracy of predictions were further analyzed by combining five threshold values of MAF
(� 0.01,� 2.5,� 5,� 7.5 and� 10%) with seven threshold values of LD (r2 � 0.4,� 0.5,
� 0.6,� 0.7,� 0.8,� 0.9 and� 1). The 35 sets of SNP markers were used for cross validation
with the ridge regression (RR-BLUP) prediction method (see below) with k = 3-fold cross vali-
dation, for each of the four traits considered.

Random sampling of markers. Random sampling was performed to distinguish the spe-
cific effect of a particular combination of MAF and LD on the accuracy of prediction from the
effect of an equivalent number of randomly chosen markers. Ten incidence matrices were sam-
pled, from 100 SNPs to 7,200 SNPs with an increment step of 100, resulting in 720 matrices.
These matrices were used with the k = 3-fold cross validation experiment with RR-BLUP pre-
diction method for each of the four traits.

Relationship between the training and the validation populations. The effect of varying
degrees of relationship between the TP and VP was investigated in a set of cross validation
experiments by comparing the accuracies of prediction obtained under three strategies for the
assignment of the S2:4 lines to the TP and VP populations: (i) random assignment, where the
343 S2:4 lines were considered as being derived from a single population, i.e. 2/3 being ran-
domly assigned to the TP and 1/3 to the VP; (ii) balanced assignment based on the stratifica-
tion of the 343 S2:4 lines into four subpopulations (PCT4-C0, PCT4-C1, PCT4-C2 and
PCT11-C1), where each subpopulation contributed 2/3 to the TP and 1/3 to the VP; (iii) unbal-
anced assignment where, in turn, all lines from three subpopulations were used as TP and all
lines from the subpopulation that was left out were used as the VP. These six case studies were
tested for accuracy using the RR-BLUP method for the four traits and 35 incidence matrices.

Methods for predicting GEBV among S2:4 lines
As a first step in exploring the potential of genomic selection in our rice population breeding
program, we assumed a strictly additive genetic model among the S2:4 families. This was a rea-
sonable approximation in the context of population improvement with mild selection pressure
for the traits of interest. Parametric whole genome regression methods are widely used to han-
dle these additive genetic models. These methods are based on well-established theories and to
some extent apply the regularization technique to resolve the p>> n problem. The parametric
whole genome regression methods differ considerably in the way the regularization parameter
λ is obtained and used in calculations [34]. Several user-friendly computing tools have been
developed in the R environment (http://www.r-project.org/) to perform whole genome
regression.

Five methods were applied (three frequentist and two Bayesian) to test the different hypoth-
eses concerning the marker effects. The frequentist methods were the genomic best linear unbi-
ased prediction (G-BLUP), the ridge regression best linear unbiased prediction (RR-BLUP),
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and the least absolute shrinkage and selection operator (LASSO). The Bayesian methods were
Bayesian ridge regression (BRR) and Bayesian LASSO (BL). In G-BLUP, the first step consisted
in using the incidence matrix X linking markers to individuals to estimate the genomic rela-
tionship matrix (G), a matrix of covariance between individuals based on observed similarity at
the level of the markers [35]. A mixed model was implemented using the R-ASReml package
[36] using the G relationship matrix to produce the predictions for each individual (i.e. individ-
ual BLUP). RR-BLUP [37] is another early but still widely used method for genomic prediction
[9,38]. The method consists in estimating simultaneously the effect of all markers listed in X,
through an optimization function that minimizes both the sum of squared errors and the sum
of squared marker effects multiplied by the λ parameter. This method gives similar individual
predictions to those produced by G-BLUP [39]. By shrinking all marker effects with the same
degree and including all markers in the model, both RR-BLUP and G-BLUP methods imply
that the trait is controlled by many loci with small effects. RR-BLUP was implemented using
the rrBLUP package [40]. The LASSO regression method drives some marker effects to exactly
zero, selecting at most the same number of predictors as the number of observations [41].
When predictors are highly collinear, LASSO retains only one randommarker per group of
correlated predictors, which could be non-physically linked to underlying genes controlling
trait variation. LASSO retains or discards markers, which often results in high variance and
high prediction error by the full model. A parameter λ that minimizes the prediction error was
found by cross validation and used to predict GEBVs in the VP. We used the Glmnet package
[42] to implement the LASSO method. Bayesian methods are used to select variables and to
shrink estimates [34]. Using this approach, a prior was assigned to all model unknowns, while
the intercept and the vector of fixed effects were assigned flat priors. Under a Bayesian model, a
separate variance was estimated for each marker, and the variance was expected to follow a
specified prior distribution [43]. The hyper-parameter λ was formulated using a Gamma distri-
bution to match the expected proportion of variance accounted for by the corresponding ele-
ment of the linear predictor [44]. The rate and shape parameters of the Gamma distribution
assigned to the regularization parameters were defined following the guidelines presented by
de los Campos [45]. The BRR and BL regression models used in this study considered marker-
homogeneous and marker-specific shrinkage of estimates effects, respectively. For both meth-
ods, the estimate of variances effects was calculated through a Gibbs sampling procedure based
on the posterior distribution conditional on all other effects. The BL led to stronger shrinkage
of estimates of marker effects toward zero for markers with small effects and less shrinkage of
estimates for markers with sizable effects than BRR. The BL method on additive SNP effects
was performed as proposed by Park and Casella [46] and modified by de los Campos et al.
[47], and the BRR was performed as proposed by Pérez et al. [48]. Both the BRR and BL meth-
ods were implemented with BGLR software [44].

Cross validation analysis
The set of 343 S2:4 lines was partitioned randomly into k = 3, 6 and 9 folds. For each combina-
tion of the prediction method, population parameter and phenotypic trait investigated, a

model was calibrated using k�1
k

� ��343 lines with genotypic and phenotypic data (229 lines for

k = 3, 286 lines for k = 6 and 305 lines for k = 9), and the predictive capacity of the model was
assessed by validating the estimated model with the lines in the left out fold (114 lines for k = 3,
57 lines for k = 6 and 38 lines for k = 9). The correlation between GEBVs predicted by the
model and the observed phenotypic BLUP values was calculated. This process was repeated k-
times so that each fold was left out once. The number of replicates (R) was chosen so that (k �

R)� 100 cross validation tests (i.e. R = 34 for k = 3, R = 17 for k = 6 and R = 12 for k = 9).
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Results of the same partitioning of lines into k-folds were used for the implementation of the
three frequentist methods. New independent random partitioning was carried out for the two
Bayesian methods for each of the 100 cross validation tests. Finally, the mean of the correla-
tions (average accuracy) and the standard deviation across all cross validation tests were calcu-
lated for each k value.

The first cross validation experiment produced up to 55,296 correlations, resulting from 540
scenarios (four traits, five methods, three MAF, three LD and three k-fold values), with 100 to
108 tests for each scenario. These correlations (r) were then normalized, using a transformation
function as proposed by Fisher [49] applying z = 0.5 � ln((1+r)/(1-r)). Once transformed, the
correlations were analyzed as dependent variables in a variance analysis. ANOVA was per-
formed to partition the variance into different sources, with all effects declared as fixed, and fol-
lowing three models: The simplest model compared all scenarios as a whole and gave the
pooled dispersion in each scenario. The second model compared all the effects (trait, method,
MAF, LD and k-fold ratio) without any interaction. The third model accounted for all effects
as well as for all possible first-order interactions. The same ANOVA procedure was applied to
analyze the other cross validation experiments that combined the 35 incidences matrices and
the six population assignment methods.

Results

Phenotypic and genotypic characteristics of the population
Distribution and heritability of phenotypic traits. Of the four phenotypic traits investi-

gated, only PH and PW were normally distributed. After log transformation of FL and YLD,
variance analysis of all four traits revealed a highly significant effect for genotype (Table 1).
Population structure (subpopulation) had a highly significant effect (p< 0.01) for PH and PW
and a significant effect (p< 0.05) for FL and YLD. The replicate and block effects were highly
significant for all traits. The results of ANOVA on the transformed variables were identical to
those on non-transformed data. Consequently BLUP for individual S2:4 lines were calculated
using untransformed data. Narrow sense heritability was high for FL and PH, moderate for
YLD and low for PW (Table 1).

Multidimensional analysis of phenotypic data confirmed the results obtained with ANOVA
for the effect of subpopulation. Projection of the 343 S2:4 lines on the space defined by the two
first axes of a FDA using the BLUP values for the four phenotypic traits (Fig 1A) showed a
notable overlap between the four subpopulations. However, it also showed moderate differenti-
ation when the barycenter of each subpopulation was considered. Fisher distances were highly
significant (p< 0.001) between all pairs of subpopulations except PCT4-C2 and PCT11-C1
(Table 2).

Distribution of SNP markers. Across all chromosomes and all markers, the average
marker density was one SNP every 44.8 kb, with densities ranging from 36.7 kb to 51.8 kb. The
distribution of the 8,336 SNP loci along the 12 rice chromosomes is summarized in S1 Table
and S1 Fig. The median (50% of the markers) for the distance between any pair of adjacent
markers was 22.8 kb across chromosomes, ranging from 19.5 to 29.3 kb. For 88% of the pairs
of adjacent markers, the distance was less than 100 kb, and in 22 cases, the distance was greater
than 500 kb (data not shown).

Population characteristics. The distribution of allele frequencies at individual loci was
markedly skewed toward unbalanced frequencies (S1 Table) and followed a beta law (S2 and
S3 Figs) with mean β = 0.56, ranging from 0.38 to 0.68. The average MAF was 15.2% with a
median of 9.6% and a third quartile of 23.7%. The proportion of loci with a MAF� 10% was
particularly high for chromosomes 4 and 9, 72% and 88%, respectively.
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The average heterozygosity at the level of individual SNP markers was moderate (5.7%),
with a median value of 4.8% and a maximum of 22%. The distribution of observed heterozy-
gous loci (Ho) varied among the 12 rice chromosomes (S1 Table) and the median ranged from
2.8% to 6.5%. Among the 343 S2:3 lines, heterozygosity ranged from 0.6% to 32.4% with half
the population accounting for 4.7% of heterozygous markers. At the scale of the entire genome,
the distribution of Ho was right-skewed, with the highest fraction of loci within a class of 2–3%
heterozygosity, and decreasing progressively until 20–21% heterozygosity, while the expected
heterozygous loci (He = 2 p (1—p) / 4) shows a nearly U-shape distribution (S4 Fig). For all
chromosomes Ho tended to be overestimated when the MAF was low and underestimated
when the MAF was high (S4 Fig).

Effective population size Ne varied among the four subpopulations, from 28 for PCT4-C1 to
53 for PCT11-C1 (Table 2), reflecting the history of each subpopulation. The Ne calculated for
the whole population of 343 S2:3 was 57.

Linkage disequilibrium. The LD, calculated for the population of 343 S2:3 lines was rather
high and did not decrease rapidly with physical distance (S2 Table). The r2 values among the
12 chromosomes averaged 0.59 for marker pairs whose distance was between 0 and 25 kb, and
ranged from 0.52 to 0.69. For all the chromosomes except chromosome 9, the r2 decreased to
half its initial value when the distance between markers reached 500 to 650 kb. In the case of
chromosome 9, the 50% decrease in r2 was reached at a distance of 1,500–2,000 kb between
markers. The r2 values decreased to 0.2 at a distance of 900–1,500 kb for all chromosomes
except chromosome 9. The average marker density of one SNP per 44.8 kb is thus enough for
the estimation of the breeding value at the whole genome level.

Population structure. The projection of the 343 S2:3 lines on the space defined by the two
first axes of the FDA (Fig 1B) revealed a complete overlap between PCT4-C0 and PCT4-C1,
and a moderate overlap between these two subpopulations and PCT11-C1 and PCT4-C2. The
heat map built from the kinship matrices (S5 Fig) confirmed the existence of a minor structure.

Table 1. Summary statistics of the four phenotypic traits, ANOVA results and heritability on phenotypes of the 343 S2:4 lines extracted from four
subpopulations.

Statistics Phenotypic traits

FL PH YLD PW

Adjusted means (standard error)

Subpopulation PCT4-C0 (n = 86) 79.59 (0.77) 90.16 (1.25) 37.21 (2.55) 2.09 (0.09)

Subpopulation PCT4-C1 (n = 83) 80.95 (0.79) 93.27 (1.27) 45.46 (2.57) 2.18 (0.09)

Subpopulation PCT4-C2 (n = 82) 78.06 (0.79) 99.34 (1.28) 45.09 (2.60) 2.39 (0.09)

Subpopulation PCT11-C1 (n = 92) 79.72 (0.75) 98.03 (1.22) 44.2 (2.49) 2.36 (0.09)

ANOVA results (p-values)

Replicate < 0.0001 < 0.0001 0.0003 0.0013

Subpopulation 0.0672 <0.0001 0.0156 0.0086

S2:4 lines (Subpopulation) < 0.0001 < 0.0001 < 0.0001 0.0027

Variance components

Block (Replicate) 1.59 12.85 96.04 0.13

S2:4 lines (Subpopulation) 46.03 89.89 214.55 0.12

Residual 4.16 34.74 273.68 0.61

Heritability (h2) 0.86 0.58 0.29 0.10

FL: days to flowering; PH: plant height; YLD: grain yield; PW: panicle weight; N and n: number of S2:4 lines that comprise the population and

subpopulations, respectively. p-values from Fisher’s test to test the fixed effects.

doi:10.1371/journal.pone.0136594.t001
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Fig 1. Projection of the 343 S2:3 lines on the first plane of a factorial discriminant analysis using (A) phenotypic data and (B) genotypic data.

doi:10.1371/journal.pone.0136594.g001
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Pairwise genetic differentiation evaluated by FST parameter was low but significant (p< 0.01)
between all pairs of subpopulations (Table 2). Genotypic data had a higher power of discrimi-
nation than phenotypic data. As a result, the genotypic structure only partially overlapped the
phenotypic structure. The existence of this genotypic structure provided a basis for evaluating
the effect of the genetic distance between the training and validation populations on the accu-
racy of GEBVs.

Accuracies of GEBV obtained by cross validation
In the first set of cross validation experiments, the 540 average accuracy (AA) values obtained
differed greatly between traits, k-fold ratio, incidence matrices and regression methods (S3
Table). Overall, the highest AA was achieved for PH and the lowest AA for FL. For each trait,
the optimal combination of factors varied. The highest AA was reached for PH (AA = 0.538)
with BRR, k = 6, r2 � 0.9 and MAF� 5%, for PW (AA = 0.327) with BL, k = 9, r2 � 1 and
MAF� 5%, for YLD (AA = 0.309) with BL, k = 9, r2 � 0.9 and MAF� 5%, and for FL
(AA = 0.295) with LASSO, k = 6, r2 � 0.9 and MAF� 5% (Table 3).

Factors controlling the variation in prediction accuracy. For the first cross validation
experiment, we used a factorial design to compare the 540 scenarios resulting from a combina-
tion of traits, methods, MAF, LD and k-fold ratio. This design made it possible to identify the
effects of controlled factors and their interactions. Each single correlation between GEBVs and
BLUP values was transformed as recommended by Fisher [49] to normalize the distribution
so as to perform an ANOVA, whose results are presented in Table 4. Under the first model
(539 degrees of freedom), ANOVA showed that the scenarios explained more than half of
the total variation (R2 = 0.56) but that a high proportion of variation remained unexplained
(CV = 39.6%). Under the second model, considering the main effects of controlled factors (13
degrees of freedom), ANOVA revealed very highly significant (p< 0.0001) effect of all factors,

Table 2. Pairwise Fisher distance (FD) and genetic differentiation (FST) between subpopulations, effective population size (Ne) and number of
monomorphic loci for each subpopulation (Nπ) out of 3,675 SNP.

PCT4-C0 PCT4-C1 PCT4-C2 PCT11-C1 Ne Nπ

PCT4-C0 4.526 ** 11.568 *** 7.814 *** 32 ± 0.05 836

PCT4-C1 0.025 * 10.422 *** 5.381 *** 28 ± 0.05 577

PCT4-C2 0.045 * 0.047 * 1.249 NS 48 ± 0.10 314

PCT11-C1 0.050 * 0.058 * 0.045 * 53 ± 0.05 608

Pairwise FD are presented above the diagonal and pairwise FST below the diagonal.

*, ** and ***: significant with p < 0.01, 0.001 and 0.0001, respectively; NS: non-significant.

doi:10.1371/journal.pone.0136594.t002

Table 3. Best average accuracies among the 135 GEBVs obtained from the training data sets (TP) and the observed BLUP of the validation data
sets (VP) considering each trait.

Trait k-fold LD (r2 �) MAF (� %) Number of SNP Method Average Accuracy

PH 6 0.9 5 4011 BRR 0.538 (0.082)

PW 9 1 5 5604 BL 0.327 (0.126)

YLD 9 0.9 5 4011 BL 0.309 (0.148)

FL 6 0.9 5 4011 LASSO 0.295 (0.113)

FL: days to flowering; PH: plant height; YLD: grain yield; PW: panicle weight; LD: linkage disequilibrium; MAF: minor allele frequency. Methods; LASSO:

least absolute shrinkage and selection operator, BL: Bayesian LASSO, BRR: Bayesian ridge regression

doi:10.1371/journal.pone.0136594.t003
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explaining 52% of total variation. The third ANOVA, which considered both main factors and
all first-order interactions (79 degrees of freedom), showed that the interactions as a whole
marginally improved the model (R2 = 0.55), although six of them proved to be very highly sig-
nificant (p< 0.0001). Thus, when comparing R2 in model 1 and model 3, higher order interac-
tions should explain even less variation.

Effect of the method of prediction. AA values differed significantly among the five meth-
ods of prediction implemented. The AA was the highest for BL (AA = 0.312) on average and
lowest for LASSO (AA = 0.265) (Table 5). The AA obtained with BRR, G-BLUP and RR-BLUP
were comparable and intermediate. The regression method interacted with each of the other
factors (Table 4). The traits for which the highest differences were found across the five meth-
ods were FL, PW and YLD (S4 Table). For all traits except FL, the LASSO method led to the
lowest AA. Since the performance of RR-BLUP was intermediate and because the process of
calculation is comparatively rapid, only this method was used for the supplementary set of
cross validation experiments.

Effect of the k-fold ratio. The AA increased slightly with an increase in the k-fold ratio,
AA = 0.285 for k = 3, AA = 0.302 for k = 6, and AA = 0.308 for k = 9 (Table 5). The differences

Table 4. Sources of variation of the AA in the first cross validation experiment considering 540 scenarios.

Model Source DF SS MS F Value Prob F R2 CV Root MSE

A
N
O
V
A
fit

st
at
is
tic
s

1. Scenarios Model 539 1092.21 2.03 127.14 < .0001 *** 0.556 39.61 0.126

Error 54625 870.60 0.02

Corrected Total 55164 1962.81

2. Individual factors Model 13 1020.48 78.50 4594.18 < .0001 *** 0.520 41.01 0.131

Error 55151 942.33 0.02

Corrected Total 55164 1962.81

3. Factors & interactions Model 79 1081.65 13.69 855.94 < .0001 *** 0.551 39.68 0.126

Error 55085 881.16 0.02

Corrected Total 55164 1962.81

T
es

t
st
at
is
tic
s
fo
r
ef
fe
ct
s

Controlled factors(1) Trait 3 987.38 329.13 19262.40 < .0001 ***

Method 4 21.61 5.40 316.16 < .0001 ***

k-fold 2 9.78 4.89 286.13 < .0001 ***

LD 2 1.98 0.99 57.99 < .0001 ***

MAF 2 0.89 0.45 26.11 < .0001 ***

First-order interactions(2) Method*Trait 12 52.27 4.36 272.28 < .0001 ***

LD*Trait 6 4.24 0.71 44.14 < .0001 ***

Trait*k-fold 6 1.99 0.33 20.77 < .0001 ***

Method*LD 8 1.04 0.13 8.13 < .0001 ***

Method*MAF 8 0.78 0.10 6.10 < .0001 ***

Method*k-fold 8 0.61 0.08 4.77 < .0001 ***

MAF*Trait 6 0.18 0.03 1.90 0.0766 NS

LD*MAF 4 0.02 0.00 0.28 0.8899 NS

MAF*k-fold 4 0.04 0.01 0.69 0.5999 NS

LD*k-fold 4 0.08 0.02 1.22 0.2984 NS

Sources of variation were: method (BL, BRR, G-BLUP, RR-BLUP and LASSO), trait (FL, PH, YLD, PW), MAF (� 2.5, 5 and 10%), LD (� 0.75, 0.9, 1) and

k-folds (k = 3, 6, 9).
(1) The denominator term used was the mean square error (MSE) of model 2.
(2) The denominator term used was the mean square error (MSE) of model 3.

doi:10.1371/journal.pone.0136594.t004
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were statistically significant, as shown by the average standard deviations for FL and PH,
RR-BLUP prediction methods, k-fold cross validations (k = 3, 6 and 9) and the nine incidence
matrices defined from the three MAF and the three r2 values (Fig 2). These differences are
most likely due to the decrease in the size of the VP with an increase in the size of the TP, since
in our cross validation experiments, these two sizes are mutually dependent. The standard
deviation of the mean correlation, represented by the vertical bars, revealed an increase in AA
that was associated with a significantly broader spread of the accuracies obtained for the 100
replicates of each cross validation experiment.

Effect of trait heritability on GEBV accuracy. Highly significant (p< 0.0001) differences
among AA were observed for the four phenotypic traits characterized by different narrow
sense heritability (Table 5). Considering the RR-BLUP prediction methods with k = 3-fold
cross validation and nine incidence matrices as previously defined, no simple relationship
was observed between the AA and the level of trait heritability (Fig 3). The AA varied from
AA = 0.192 for the trait with the highest heritability (FL, h2 = 0.86) to AA = 0.489 for the trait
with the second highest heritability (PH, h2 = 0.58). YLD and PW had an intermediate level of
AA (AA = 0.239 and AA = 0.274, respectively) despite some difference in heritability (0.29 and
0.10, respectively).

Effect of the size of the incidence matrix (marker density, LD and MAF). The AA
among the 540 cross validation experiments decreased very slightly with an increase in the
MAF threshold: AA = 0.301 for MAF� 2.5%, AA = 0.301 for MAF� 5% and AA = 0.293 for
MAF� 10% (Table 4). Likewise, accuracy increased slightly with a decrease in the LD thresh-
old AA = 0.291 for r2 � 1, AA = 0.301 for r2 � 0.90 and AA = 0.302 for r2 � 0.75. While MAF
and LD had a significant effect on AA, their interaction did not significantly affect the accuracy
of GEBVs (Table 4). However, a highly significant interaction (p< 0.0001) was detected

Table 5. Adjustedmeans (LSMeans) of AA for controlled factors in the first cross validation experi-
ment considering all 540 scenarios.

Controlled factor Modality LSMeans ¶

Method

BL 0.312 a

BRR 0.307 b

G-BLUP 0.304 b

RR-BLUP 0.304 b

LASSO 0.265 c

Trait

PH 0.489 a

PW 0.274 b

GW 0.239 c

FL 0.192 d

k-fold ratio

9 0.308 a

6 0.302 b

3 0.285 c

LD (r2)

0.75 0.302 a

0.90 0.301 a

1 0.291 b

MAF

2.5 0.301 a

5 0.301 a

10 0.293 b

¶ Different letters indicate significant differences (p < 0.05)

doi:10.1371/journal.pone.0136594.t005

GS in Rice Synthetic Population

PLOS ONE | DOI:10.1371/journal.pone.0136594 August 27, 2015 13 / 25



www.manaraa.com

between LD and phenotypic trait, which was not observed between MAF and traits, while both
LD and MAF interacted significantly with the prediction methods. For all traits, prediction
accuracy decreased significantly when no selection was made on LD (r2 � 1) (S4 Table). For all
methods except LASSO, AA was higher with lower LD and MAF thresholds (S4 Table). The
non-significant interaction between MAF and LD on AA could be explained by the minor dif-
ference in the effects of each factor. To answer this question, we compared the accuracy
observed using markers selected based on the combinations of five MAF thresholds (� 0.01,
� 2.5,� 5,� 7.5, and� 10%) and three LD thresholds (r2 � 0.75,� 0.90 and� 1), with the
accuracy achieved using between 100 and 7,200 randomly sampled markers. This second set of
cross validation experiments was performed with the RR-BLUP prediction model with
k = 3-fold cross validation. Results for k = 3-fold cross validation and 15 incidence matrices
resulting from the combination of five MAF thresholds and three LD thresholds are presented
for FL and PH (Fig 4). For both traits and with randomly sampled markers, the AA first
increased with the number of loci up to approximately 1,500 loci and then leveled off (Fig 4,
black line). Marker selection based on combinations of r2 � 0.75 with the five MAF thresholds

Fig 2. Mean correlation between GEBV obtained by cross validation of the training data set (Yp) and the observed BLUP values of the validation
data sets (Yo). Results presented for 2 traits, 9 incidence matrices and 3 k-fold cross validation experiments.

doi:10.1371/journal.pone.0136594.g002
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Fig 3. Mean correlation between GEBV obtained by cross validation of the training data set (Yp) and the observed BLUP values of the validation
data sets (Yo). The results of 4 different traits and 9 incidence matrices are presented.

doi:10.1371/journal.pone.0136594.g003

Fig 4. Mean correlation between GEBV obtained by cross validation of the training data set (Yp) and
the observed BLUP values of the validation data sets (Yo). The results for flowering date (FL) and plant
height (PH) and 15 incidence matrices are presented.

doi:10.1371/journal.pone.0136594.g004

GS in Rice Synthetic Population

PLOS ONE | DOI:10.1371/journal.pone.0136594 August 27, 2015 15 / 25



www.manaraa.com

covering an interval of 700 to 2,500 markers (Fig 4, blue line) always resulted in higher accu-
racy than random sampling of SNPs, and accuracy increased significantly with higher MAF
values for FL. Slightly higher accuracy was achieved for any combinations of MAF thresholds
with r2 � 0.90 covering the interval of approximately 2,200 to 5,000 markers for PH (Fig 4, red
line). However, the advantage of marker selection did not hold true for the combination of any
MAF value with r2 � 1 (Fig 4, green line), and in the case of FL, accuracy was slightly greater
when the markers were selected randomly.

These general trends were confirmed by a third set of 140 cross validation experiments with
a broader range of LD threshold values (r2 � 0.4 to r2 � 1, with an increment of 0.1) tested
under the RR-BLUP prediction model with k = 3-fold cross validation (S5 Table). Yet, when
the different traits were considered separately for the 35 incidence matrices (Fig 5), the optimal
thresholds of LD were reached with different levels of LD: r2 � 0.6 for FL, r2 � 0.7 for PH, and
r2 � 0.9 for YLD and PW (S5 Table). For all traits, variations in MAF threshold values<5%
had little effect on accuracy, which started to decrease when MAF values were between 5 and
10% (S5 Table).

Kinship between the training and the validation population. In the 840 cross validation
experiments performed to test the effect of kinship between the TP and VP, six different meth-
ods of sampling VP were tested (S6 Table). When the S2:4 lines comprising TP and VP were
randomly sampled, without considering their membership of one of the four subpopulations,
AA was 0.286, and the same results were obtained when the TP and VP represented a balanced
share of each of the four subpopulations. The AA was significantly lower (AA = 0.231) when
the TP comprised all the lines of three of the subpopulations and the VP comprised all the lines

Fig 5. Mean correlation between GEBV obtained by cross validation of the training data set (Yp) and the observed BLUP values of the validation
data sets (Yo). The results for days to flowering (FL), plant height (PH), panicle weight (PW) and grain yield (YLD) and 35 incidence matrices are presented.

doi:10.1371/journal.pone.0136594.g005
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of the fourth subpopulation. In this sampling scenario, the lowest AA was observed when vali-
dation was performed using the PCT4-C0, PCT4-C1 or PCT4-C2 subpopulation, AA = 0.224,
AA = 0.227 and AA = 0.231, respectively, and the AA was significantly higher (AA = 0.243)
when PCT11-C1 was used as the VP (S6 Table). Significant interactions were observed between
phenotypic traits and the sampling of TP when the RR-BLUP prediction method and nine inci-
dence matrices were used (S6 Table, Fig 6 for FL, and S6–S8 Figs for the three other traits). The
effect of the sampling strategy was highest for FL, AA = 0.165 with random sampling of VP,
and AA = 0.052 when PCT4-C0, PCT4-C1 and PCT4-C2 were used to predict GEBVs in

Fig 6. Mean correlation between GEBV obtained by cross validation of the training data set (Yp) and the observed BLUP values of the validation
data sets (Yo). Results for day to flowering (FL) are presented for different composition of the validation population (VP).

doi:10.1371/journal.pone.0136594.g006
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PCT11-C1. The least sensitive trait was PW, with a similar AA (0.223 to 0.285) for all the sam-
pling strategies.

Discussion
The aim of this study was to evaluate the potential of genomic selection to increase genetic
gains in the context of rice population improvement through recurrent selection. The choice of
this breeding scheme was based on the assumption that it is the most suitable for the improve-
ment of complex quantitative traits, as it makes it possible to increase the frequency of favor-
able alleles while maintaining sufficient genetic variability for further crop improvement [34].
The expected increase in genetic gain is assumed to come from the acceleration of the RS
process (more cycles per unit time), and from higher selection intensity, through genotypic
evaluation of a larger number of candidates. Hereafter we (i) compare the accuracy of GEBV
prediction to those reported in the literature (ii) discuss how the characteristics of our breeding
population influenced the accuracy of genomic prediction, and (iii) under which conditions
the promise of GS in increasing genetic gain can actually be fulfilled.

Accuracy of GEBVs
The accuracy of genomic prediction in crop species obtained through cross validation using
empirical data varies greatly. Most variation is attributed to the population structure and size,
marker density and the genetic architecture of the traits. Generally, the accuracies of GEBV
obtained in our study were lower than, or similar to, those reported in the rice literature. For
instance, similar to our results, the accuracy of prediction for flowering in the tropical japonica
component of a diversity panel of 413 accessions originating from 82 countries, ranged from
0.13 to 0.33. In the same experiment, the accuracy for plant height averaged 0.77 [15] versus
0.50 in our case. Likewise, the AA values observed for YLD and PW were similar to the accu-
racy reported for grain yield (0.304) in the rice indica population [17]. Conversely, for PH, the
accuracy observed in that study (0.292) was much lower than in our study. Such a difference
may reflect variability of heritability in the tropical japonica training population (h2 = 0.58 for
PH) and in the indica population (h2 = 0.30 and 0.35 according to the season).

The results we obtained with the different regression methods differed significantly: the BL
prediction model was slightly better (AA = 0.312), the BRR, G-BLUP and RR-BLUP methods
resembled each other and intermediate, and the LASSO method produced lower AA values
(AA = 0.265). Interactions between methods and traits were significant, mainly because
LASSO produced a high AA for FL. The higher AA provided by LASSO compared to BLUP
methods was the consequence of fitting a reduced number of explanatory variables to the
model, setting some markers to exactly zero effect, thereby making it possible to avoid model
over-parameterization for a trait controlled by a few major loci. As a matter of fact, looking at
the effect of the markers for FL, in our population, a single locus with a strong effect was
detected (data not shown). Similar results have been reported in the GS of fusiform rust resis-
tance in loblolly pine, a trait controlled by a few genes with large effects [50] thus highlighting
the importance of variable selection in GS. This result was also supported by the fact that selec-
tion of markers based on LD had the strongest effect on accuracy for FL. Similarly, Spindel
reported greater accuracy of prediction for FL with the random forest algorithm, which is
known to more effectively capture QTLs with large effect [17]. The difference between the AA
obtained with LASSO and Bayesian LASSO was not expected, and was probably a consequence
of differences in the sampling of S2:4 lines for TP and VP during the cross validation process.

GS in Rice Synthetic Population

PLOS ONE | DOI:10.1371/journal.pone.0136594 August 27, 2015 18 / 25



www.manaraa.com

Effect of structure on the accuracy of genomic prediction
As expected, our synthetic population of 343 S2:3 lines exhibited a mild structure due to the
breeding history of its four component subpopulations. GS was more accurate when the train-
ing set was more closely related to the selection candidates, i.e. when the TP and VP were made
of a random set of all four subpopulations or from an equal proportion of each subpopulation.
A similar effect of the composition of the TP has been reported in GS experiments using the
rice diversity panel of 413 accessions. Accuracy within indica and japonica subpopulations was
much greater than across the whole population due to a strong population structure accounting
for 58.7% of overall molecular variance [16]. The authors applied different sampling algorithms
to demonstrate that the optimization depends on the interaction between population structure
and trait architecture where, for a polygenic trait the genome-wide relationship matrix may
capture the phenotypic relationship, while for a non-polygenic trait, optimization may be
achieved if the alleles controlling the trait are distributed according to the structure. In our
study, considering all the 35 incidences matrices, the strongest effect of population structure
was encountered for FL when one subpopulation was left out of the TP to serve as a VP, and
the accuracy of the prediction were severely reduced when the three subpopulations together
were used to predict FL in the PCT11-C1 subpopulation. The result of this un-stratified sam-
pling suggests that the alleles controlling FL were not distributed according to the population
structure, which was expected, as FL was not a criterion for subpopulation differentiation and
varied among and within subpopulations. For our synthetic population, it would be interesting
to analyze the accumulated length of shared haplotypes between the members of the TP and
VP to assess the impact of LD relative to structure.

Effect of LD on the accuracy of genomic prediction
The prequirement for high accuracy in GS is that the markers and QTLs are in strong linkage
disequilibrium. When no prior information is available on the number and position of the
QTLs, LD between SNPs can be used as a surrogate to evaluate the extent of LD in the popula-
tion of interest. For quantitative traits controlled by many genes, in a multi-SNP effect detec-
tion approach, sampling the whole genome would ensure that the distribution of markers is in
agreement with the LD of the population. In our population of 343 S2:3 lines, the short distance
LD (r2 = 0.59 for distances of 0–25 kb) was similar to the one observed in a reference panel of
168 accessions representing the diversity of the tropical japonica group of O. sativa (to which
our synthetic population belongs) genotyped in an identical GBS experiment [26]. However,
the long distance LD (500–600 kb) decay was much slower than the one reported in the above
mentioned reference panel and by other authors [26,51–53] in japonica backgrounds, which
vary between 150 and 180 kb. Given these LD values, the marker density of 1 SNP per 45 kb we
achieved is reasonably good coverage for the purpose of genomic GEBV prediction. In similar
GS studies in diverse rice populations, the authors recommended the use of 6 and 7 k SNPs
[17].

High long range LD can emerge from co-selection of favorable mutations in some regions
of the genome conferring an adaptive advantage. However, in our case it was most probably
due to the random associations of distant loci during the two-generation advance (S0 –S2) per-
formed through single seed descent (SSD). High LD due to recent recombination events can
reduce the accuracy of GEBV in cross validation experiments, as it is distributed within and
not across the progenies. Likewise, it can rapidity reduce the accuracy of GEBV across breeding
cycles, as it is highly susceptible to meiosis effects.

In our cross validation experiment, the accuracy of genomic prediction for PH, PW and
YLD was affected by the choice of markers based on LD, and significantly higher accuracy was
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achieved for FL when the SNPs were selected with a LD threshold of r2 � 0.75. The lower LD
implies lower collinearity between markers, and collinearity was found to hamper the ability of
regression methods to identify QTLs [54]. Indeed, we found significantly lower accuracies
when all collinear markers were included (r2 � 1). As suggested in other studies, the number of
markers does not need to be high to achieve good genomic prediction, and best accuracy was
achieved with no more than 7,142 well distributed SNPs (~ 1 SNP every 0.2 cM) in the irrigated
rice population of breeding lines [17]. Based on simulation studies aimed at defining optimal
marker density for GS, Solberg et al. [55] showed that accuracy reaches a plateau (> 0.8) at a
marker density of 4Ne/morgan for an effective population size of 100 with 1,000 phenotypes
and a heritability of 0.5. Understandably, this simulation depends on the genetic model of the
trait concerned, and requires adjustment of the prior distribution to the true distribution of the
QTL effects. In our case, with a map of 18 morgans (www.mapdisto.free.fr/), Ne ~ 50 implies
that about 3,600 SNPs would be needed under an infinitesimal model with additive effects and
under the assumption of evenly distributed QTLs on the chromosomes. For PH, PW and YLD,
the greatest accuracies with the RR-BLUP method were achieved with matrix sizes ranging
from 4,011 to 5,148 SNPs. Conversely, for FL, the greatest accuracies were achieved with a
matrix size of 1,758 SNP, suggesting that the assumptions presented in the aforementioned
simulation study do not apply to this trait. The low accuracy of the prediction of the highly her-
itable FL trait using the largest SNP matrices may result from high collinearity (the above men-
tioned long range LD) between markers and associated numerical instability.

Effect of MAF on the accuracy of genomic prediction
Our interest in accounting for MAF in GS was motivated by the need to determine a reasonable
MAF threshold to be used in the predictions. Our population of 343 S2:3 lines exhibited a num-
ber of polymorphic loci similar to the number observed in the reference tropical japonica panel
[26] but the distribution of the MAF in those loci differed. Half the loci had an allelic frequency
close to zero or one, leading to a U-shaped distribution. Likewise, several chromosomal regions
had low MAF (� 11%) that were not reported in the reference panel. This MAF distribution
may result from the allelic composition of the founder varieties of the synthetic populations
or from the selection pressure to which the population has been subjected for more than 10
recombination cycles. Markers with low MAF contribute little to detectable phenotypic varia-
tion even when tightly linked with causal QTLs. On the other hand, even though those markers
are statistically less informative in terms of the accuracy of individual predicted SNP values,
they may be important for optimal representation of the genome and the relationships between
individuals with methods such as G-BLUP. The results of our first cross validation experiment
showed that the three MAF thresholds compared (� 2.5%,� 5.0% and� 10.0%) were differen-
tiated by most methods. When a larger range of MAF was explored using the RR-BLUP
method, the results revealed a complex relation between MAF and LD and the resulting marker
density in determining accuracies. This relation varied with the traits concerned, suggesting a
role for trait architecture in the relation between AA and MAF. At a given level of LD, consid-
ering markers with very low MAF did not improve prediction accuracy but significantly
increased computation time (not shown). On the other hand, higher thresholds for MAF
(� 5%) could negatively impact the accuracies, particularly if LD thresholds become too strin-
gent, as a result of insufficient genome coverage. Scutari [56] showed that the penalized LASSO
method retained both common and rare alleles when genotypes were first standardized to unit
variance. In contrast, when a non-standardized incidence matrix was used in the model, the
method preferentially retained common alleles and excluded rare alleles. Likewise, de los Cam-
pos et al. [34] showed that standardization caused stronger shrinkage for intermediate allele
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frequencies, and minimum shrinkage for extreme allele frequencies. Standardization thus
appears to be suitable when the objective is to identify chromosomal segments that contribute to
genotype-phenotype relations over the whole genome and independently of the current distribu-
tion of allele frequencies in the population. It is also suitable when the objective is the long-term
improvement of the breeding population through a progressive increase in the frequency of
favorable alleles. However standardization has also the drawback of promoting markers whose
effect on phenotypic variation is not evaluated precisely. In the particular context of our RS-
breeding program, it is not inconsequential to standardize the incidence matrix because (i) half
the SNP markers have low allelic frequencies (MAF< 0.10) and (ii) rare and undetected favor-
able alleles are the basis for the recurrent breeding scheme, which aims to increase the frequency
of such alleles in the population. For these reason, the best compromise may be (i) standardiza-
tion after elimination of markers with the most unbalanced allele frequency and (ii) regular
updating of the model across RS cycles to incorporate changes in allele frequencies. Finally, in
forward-in-time simulations, mutation-drift equilibrium is an important issue as it acts as a stop
criterion in the process of in silico simulation of base populations that are needed to help deal
with high dimensional problems, to explore experimental designs for GS, or to test alternative
hypotheses. Our synthetic population meets these conditions since the U-shaped distribution of
MAF can be interpreted as a population in mutation-drift equilibrium [57].

Conclusions
Here we evaluated the effect of different parameters (regression model, population structure,
characteristics of the incidence matrix, and trait genetic architecture) on the accuracy of
GEBV, in the context of rice population improvement through recurrent selection. Although a
rather low level of accuracy of GEBVs was observed in any combination of levels of the differ-
ent parameters, this first study does not call into question the potential of genomic selection
(GS) to increase genetic gains in the context of this breeding scheme. First, because the
observed accuracy of GEBV was of the same magnitude as the heritability of complex traits
such as grain yield, and GS can potentially accelerate genetic gain by increasing selection inten-
sity (provided genotyping of a large number of entries is possible) and by shortening the selec-
tion cycle with genomic predictions approximating future pure lines performances in an earlier
generation (S1 instead of S2). Second, the accuracy of GEBV can be further improved through
more favourable germplasm development options, such as switching from single seed descent
to a bulk method when advancing from generation S0 to S2. To further explore the potential of
GS, we are currently developing a more analytical approach using simulation tools for the
development of the training population.

Supporting Information
S1 Fig. Distribution of SNP markers on the 12 chromosomes according to their physical
position after imputation of missing data.
(TIF)

S2 Fig. Distribution of allele frequency observed at the 8,336 marker loci along the 12 chro-
mosomes after imputation of missing data. The U shape can be approximated by a beta dis-
tribution with shape parameters (alpha, beta) = (0.56, 0.56).
(TIF)

S3 Fig. Distribution of frequencies of minor alleles (MAF) along the 12 chromosomes
observed at 8,336 SNP loci after imputation of missing data.
(TIF)
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S4 Fig. Distribution of observed (Ho) and expected (He) frequencies of heterozygotes (1),
and their relation with MAF over 8,336 SNP loci after imputation of missing data (2).
(TIF)

S5 Fig. Heat map representing pairwise kinship between the 343 S2:3 lines using 8,336 SNP
loci after imputation of missing data.
(TIF)

S6 Fig. Variation in the prediction accuracy of plant height (PH) according to the composi-
tion of the training (TP) and validation (TV) populations. The prediction method was
RR-BLUP with k = 3-fold cross validation; r2: linkage disequilibrium; a, b, c, d and e: minor
allele frequency (MAF) thresholds of� 0%,� 2.5%,� 5%,� 7.5% and� 10%.
(TIFF)

S7 Fig. Variation in the prediction accuracy of gain yield (YLD) according to the composi-
tion of the training (TP) and validation (TV) populations. The prediction method was
RR-BLUP with k = 3-fold cross validation; r2: linkage disequilibrium; a, b, c, d and e: minor
allele frequency (MAF) thresholds of� 0%,� 2.5%,� 5%,� 7.5% and� 10%.
(TIFF)

S8 Fig. Variation in the prediction accuracy of panicle weight (PW) according to the com-
position of the training (TP) and validation (TV) populations. The prediction method was
RR-BLUP with k = 3-fold cross validation; r2: linkage disequilibrium; a, b, c, d and e: minor
allele frequency (MAF) thresholds of� 0%,� 2.5%,� 5%,� 7.5% and� 10%.
(TIFF)

S1 Table. Summary information on the distribution of the 8,336 SNP loci, distribution of
the minor allele frequencies (MAF), and distribution of heterozygosity along the 12 rice
chromosomes.
(XLSX)

S2 Table. Average linkage disequilibrium (r2) between marker pairs according to chromo-
somes and the distance between markers, considering loci with MAF� 2.5%.
(XLSX)

S3 Table. Average accuracies between 108 GEBVs obtained for the training data sets (TP)
and the observed BLUP of the validation data sets (VP) considering three k-fold ratios
between TP and VP.Mean of correlations (standard deviation) across the 100 cross validation
replicates
(XLSX)

S4 Table. Least square means (LSMeans) for first set of 540 cross validation experiments to
test the significant difference between grouped effects; methods x trait, methods x k-fold,
methods x LD, methods x MAF. Different letters indicate significantly different least square
means LSMeans.
(XLSX)

S5 Table. Least square means (LSMeans) for the second set of 140 cross validation experi-
ments including 35 incidence matrices and tests of the significant difference between
grouped effects; LD x trait, MAF x traits. Different letters indicate significantly different
LSMeans.
(XLSX)
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S6 Table. Least square means (LSMeans) for the third set of 840 cross validation experi-
ments testing the significant difference between grouped effect of different scenarios for
the sampling of training and validation populations.
(XLSX)
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